НЕРАЗРУШАЮЩИЙ КОНТРОЛЬ

Основные направления неразрушающего контроля компании ООО "Инновации Сибири"

Неразрушающий контроль бетонных конструкций  и изделий методом ударного импульса по ГОСТ 22690-2015.

Метод ударного импульса заключается в регистрации энергии удара, возникающей в момент соударения бойка с поверхностью бетона. Определение прочности бетона методом ударного импульса является достаточно простой операцией. Результаты измерений выдаются в единицах измерения прочности на сжатие. Также с их помощью можно определять класс бетона, производить измерение прочности под различными углами к поверхности объекта, переносить накопленные данные на компьютер. Ударные импульсы – это ударные волны малой энергии, генерируемые подшипниками качения вследствие соударений и изменений давления в зоне качения этих подшипников в течение всего срока службы подшипников и распространяющиеся в материалах деталей подшипника, подшипникового узла и прилегающих к ним деталей.

Неразрушающий контроль бетонных конструкций  и изделий методом отрыва со скалыванием по ГОСТ 22690-2015.

Метод отрыва со скалыванием занимает в ряду неразрушающих методов определения прочности бетона особое место. Считаясь неразрушающим методом, метод отрыва со скалыванием по своей сущности является разрушающим методом, так как прочность бетона оценивается по усилию, необходимому для разрушения небольшого объема бетона, что позволяет наиболее точно оценить его фактическую прочность. Поэтому этот метод применяется не только для определения прочности бетона неизвестного состава, но и может служить для построения градуировочных зависимостей для других методов неразрушающего контроля.

В нашей стране этот метод является одним из наиболее популярных, так как он достаточно универсальный. Он предоставляет возможность выполнить испытание на любом участке конструкции, так как не требует наличия ровной поверхности.

Ультразвуковой контроль сварных швов, толщинометрия металла.

Ультразвуковой метод контроля применяется в любом направлении промышленности. Применение его показало, что он может быть одинаково эффективно использован для проверки почти всех типов сварных соединений в строительстве, которые имеют толщину свариваемого основного металла более 4 миллиметров. Кроме того, метод активно используется для проверки соединения стыков газо- и нефтепроводов, различных гидравлических и водопроводных систем. А в таких случаях, как контроль швов большой толщины, полученных в результате электрошлаковой сварки, ультразвуковая дефектоскопия – единственно приемлемый метод осуществления контроля. Окончательное решение о том, годна ли деталь или сварочный шов к эксплуатации принимается на основе трех основополагающих показателей (критериев) – амплитуды, координат, условны размеров. В целом же ультразвуковой контроль – именно тот метод, который является самым плодотворным с точки зрения формирования изображений в процессе изучения шва (детали).

Определение толщины лакокрасочных покрытий.

Подавляющее большинство технических изделий и строительных конструкций покрывают лакокрасочными покрытиями. Это делается, конечно, и для внешней привлекательности, но основная цель заключается в том, чтобы увеличить срок службы объекта. Технологическая документация содержит указания о необходимой толщине красочного слоя, следовательно, этот параметр должен контролироваться. Металлические конструкции при эксплуатации подвержены коррозии, что опять-таки требует периодического контроля толщины слоя ржавчины.

Измерение толщины покрытия осуществляется следующими методами:

  1. Магнитные методы, основанные на регистрации магнитного сопротивления или силы отрыва от поверхности изделия в зависимости от толщины покрытия. Метод магнитного потока применим для измерения толщины неферромагнитных металлических покрытий и неметаллических покрытий на основах из ферромагнитных металлов.
  2. Метод вихревых токов основан на регистрации изменения взаимодействия собственного магнитного поля катушки с электромагнитным полем, наводимым этой катушкой в изделии с покрытием. Метод применим для измерения толщин электропроводных и неэлектропроводных покрытий на основах из ферромагнитных и неферромагнитных материалов.

Тепловизионное обследование (см. соответствующий раздел)